Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.203
Filtrar
1.
Cell Host Microbe ; 32(3): 411-424.e10, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38307020

RESUMO

Intracellular Salmonella experiencing oxidative stress downregulates aerobic respiration. To maintain cellular energetics during periods of oxidative stress, intracellular Salmonella must utilize terminal electron acceptors of lower energetic value than molecular oxygen. We show here that intracellular Salmonella undergoes anaerobic respiration during adaptation to the respiratory burst of the phagocyte NADPH oxidase in macrophages and in mice. Reactive oxygen species generated by phagocytes oxidize methionine, generating methionine sulfoxide. Anaerobic Salmonella uses the molybdenum cofactor-containing DmsABC enzymatic complex to reduce methionine sulfoxide. The enzymatic activity of the methionine sulfoxide reductase DmsABC helps Salmonella maintain an alkaline cytoplasm that supports the synthesis of the antioxidant hydrogen sulfide via cysteine desulfuration while providing a source of methionine and fostering redox balancing by associated dehydrogenases. Our investigations demonstrate that nontyphoidal Salmonella responding to oxidative stress exploits the anaerobic metabolism associated with dmsABC gene products, a pathway that has accrued inactivating mutations in human-adapted typhoidal serovars.


Assuntos
Metionina/análogos & derivados , NADPH Oxidases , Fagócitos , Animais , Camundongos , Humanos , Anaerobiose , Fagócitos/metabolismo , Metionina/metabolismo , Salmonella typhimurium/metabolismo , Respiração
2.
PLoS Genet ; 20(2): e1011176, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38408082

RESUMO

Colorectal cancer (CRC) is a major cause of cancer mortality and a serious health problem worldwide. Mononuclear phagocytes are the main immune cells in the tumor microenvironment of CRC with remarkable plasticity, and current studies show that macrophages are closely related to tumor progression, invasion and dissemination. To understand the immunological function of mononuclear phagocytes comprehensively and deeply, we use single-cell RNA sequencing and classify mononuclear phagocytes in CRC into 6 different subsets, and characterize the heterogeneity of each subset. We find that tissue inhibitor of metalloproteinases (TIMPs) involved in the differentiation of proinflammatory and anti-inflammatory mononuclear phagocytes. Trajectory of circulating monocytes differentiation into tumor-associated macrophages (TAMs) and the dynamic changes at levels of transcription factor (TF) regulons during differentiation were revealed. We also find that C5 subset, characterized by activation of lipid metabolism, is in the terminal state of differentiation, and that the abundance of C5 subset is negatively correlated with CRC patients' prognosis. Our findings advance the understanding of circulating monocytes' differentiation into macrophages, identify a new subset associated with CRC prognosis, and reveal a set of TF regulons regulating mononuclear phagocytes differentiation, which are expected to be potential therapeutic targets for reversing immunosuppressive tumor microenvironment.


Assuntos
Neoplasias Colorretais , Monócitos , Humanos , RNA/metabolismo , Macrófagos/metabolismo , Diferenciação Celular/genética , Neoplasias Colorretais/patologia , Fagócitos/metabolismo , Microambiente Tumoral/genética
3.
J Cell Sci ; 137(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38294065

RESUMO

Microglia, professional phagocytic cells of the brain, rely upon the appropriate activation of lysosomes to execute their immune and clearance functions. Lysosomal activity is, in turn, modulated by a complex network of over 200 membrane and accessory proteins that relay extracellular cues to these key degradation centers. The ClC-7 chloride (Cl-)-proton (H+) antiporter (also known as CLCN7) is localized to the endolysosomal compartments and mutations in CLCN7 lead to osteopetrosis and neurodegeneration. Although the functions of ClC-7 have been extensively investigated in osteoclasts and neurons, its role in microglia in vivo remains largely unexamined. Here, we show that microglia and embryonic macrophages in zebrafish clcn7 mutants cannot effectively process extracellular debris in the form of apoptotic cells and ß-amyloid. Despite these functional defects, microglia develop normally in clcn7 mutants and display normal expression of endosomal and lysosomal markers. We also find that mutants for ostm1, which encodes the ß-subunit of ClC-7, have a phenotype that is strikingly similar to that of clcn7 mutants. Together, our observations uncover a previously unappreciated role of ClC-7 in microglia and contribute to the understanding of the neurodegenerative phenotypes that accompany mutations in this channel.


Assuntos
Proteínas de Membrana , Microglia , Animais , Microglia/metabolismo , Proteínas de Membrana/metabolismo , Cloretos/metabolismo , Peixe-Zebra/metabolismo , Prótons , Fagócitos/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo
4.
PLoS Pathog ; 19(12): e1011892, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38157331

RESUMO

Staphylococcus aureus is a dangerous pathogen that evolved refined immuno-evasive strategies to antagonize host immune responses. This involves the biogenesis of death-effector deoxyribonucleosides, which kill infectious foci-penetrating macrophages. However, the exact mechanisms whereby staphylococcal death-effector deoxyribonucleosides and coupled imbalances of intracellular deoxyribonucleotide species provoke immune cell death remain elusive. Here, we report that S. aureus systematically promotes an overload of deoxyribonucleotides to trigger mitochondrial rupture in macrophages, a fatal event that induces assembly of the caspase-9-processing apoptosome and subsequent activation of the intrinsic pathway of apoptosis. Remarkably, genetic disruption of this cascade not only helps macrophages coping with death-effector deoxyribonucleoside-mediated cytotoxicity but also enhances their infiltration into abscesses thereby ameliorating pathogen control and infectious disease outcomes in laboratory animals. Combined with the discovery of protective alleles in human CASP9, these data highlight the role of mitochondria-centered apoptosis during S. aureus infection and suggest that gene polymorphisms may shape human susceptibility toward a predominant pathogen.


Assuntos
Nucleotídeos , Staphylococcus aureus , Animais , Humanos , Staphylococcus aureus/genética , Nucleotídeos/metabolismo , Fagócitos/metabolismo , Morte Celular , Apoptose , Mitocôndrias/metabolismo , Desoxirribonucleosídeos/metabolismo
5.
Inflammopharmacology ; 31(6): 3303-3316, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37971604

RESUMO

Chronic inflammation and oxidative stress play a pivotal role in the pathophysiology of most challenging illnesses, including cancer, Alzheimer's, cardiovascular and autoimmune diseases. The present study aimed to investigate the anti-inflammatory potential of a new sulfadimethoxine derivative N-(4-(N-(2,6-dimethoxypyrimidin-4-yl) sulfamoyl) phenyl) dodecanamide (MHH-II-32). The compound was characterised by applying 1H-, 13C-NMR, EI-MS and HRFAB-MS spectroscopic techniques. The compound inhibited zymosan-induced oxidative bursts from whole blood phagocytes and isolated polymorphonuclear cells with an IC50 value of (2.5 ± 0.4 and 3.4 ± 0.3 µg/mL), respectively. Furthermore, the inhibition of nitric oxide with an IC50 (3.6 ± 2.2 µg/mL) from lipopolysaccharide-induced J774.2 macrophages indicates its in vitro anti-inflammatory efficacy. The compound did not show toxicity towards normal fibroblast cells. The observational findings, gross anatomical analysis of visceral organs and serological tests revealed the non-toxicity of the compound at the highest tested intraperitoneal (IP) dose of 100 mg/kg in acute toxicological studies in Balb/c mice. The compound treatment (100 mg/kg) (SC) significantly (P < 0.001) downregulated the mRNA expression of inflammatory markers TNF-α, IL-1ß, IL-2, IL-13, and NF-κB, which were elevated in zymosan-induced generalised inflammation (IP) in Balb/c mice while upregulated the expression of anti-inflammatory cytokine IL-10, which was reduced in zymosan-treated mice. No suppressive effect was observed at the dose of 25 mg/kg. Ibuprofen was taken as a standard drug. The results revealed that the new acyl derivative of sulfadimethoxine has an immunomodulatory effect against generalised inflammatory response with non-toxicity both in vitro and in vivo, and has therapeutic potential for various chronic inflammatory illnesses.


Assuntos
Explosão Respiratória , Sulfadimetoxina , Animais , Camundongos , Zimosan/farmacologia , Sulfadimetoxina/efeitos adversos , Sulfadimetoxina/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , NF-kappa B/metabolismo , Fagócitos/metabolismo , Modelos Animais de Doenças , Óxido Nítrico/metabolismo , Lipopolissacarídeos/farmacologia
6.
Biochem Biophys Res Commun ; 682: 56-63, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37801990

RESUMO

In this work, we investigated the presence and function of TRPM8, a non-selective and cold-sensitive Ca2+-permeable ion channel in the primary microglia cell as well as in microglia cell line BV2. We demonstrate that primary microglia as well as BV2 express TRPM8 endogenously. Both pharmacological activation or inhibition of TRPM8 causes enhanced uptake of bacterial particles at early time points of infection. In BV2, TRPM8 activation and/or LPS-signaling alters its surface expression and cytosolic ROS production. TRPM8 modulation in the absence and presence of LPS causes differential regulation of cytosolic pH and lysosomal pH. Notably, TRPM8 modulation also alters the correlation between lysosomal pH and cytosolic pH depending on TRPM8 modulation and the presence or absence of LPS. Collectively our data suggest that TRPM8 is involved in the regulation of subcellular organelle, i.e. mitochondrial and lysosomal functions. Data also suggest that primarily TRPM8 activation, but often deviation from endogenous TRPM8 function is linked with better innate immune function mediated by microglial cells. We suggest that TRPM8-mediated regulations of sub-cellular organelle functions are more context-dependent manner. Such understanding is relevant in the context of microglial cell functions and innate immunity.


Assuntos
Microglia , Canais de Cátion TRPM , Linhagem Celular , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Microglia/metabolismo , Mitocôndrias/metabolismo , Fagócitos/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Camundongos
7.
Can J Microbiol ; 69(12): 501-511, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37672795

RESUMO

Bacillus cereus endophthalmitis is a devastating eye infection that causes rapid blindness through the release of extracellular tissue-destructive exotoxins. The phagocytic and antibacterial functions of ocular cells are the keys to limiting ocular bacterial infections. In a previous study, we identified a new virulence gene, plcA-2 (different from the original plcA-1 gene), that was strongly associated with the plcA gene of Listeria monocytogenes. This plcA gene had been confirmed to play an important role in phagocytosis. However, how the Bc-phosphatidylinositol-specific phospholipase C (PI-PLC) proteins encoded by the plcA-1/2 genes affect phagocytes remains unclear in B. cereus endophthalmitis. Here, we found that the enzymatic activity of Bc-PI-PLC-A2 was approximately twofold higher than that of Bc-PI-PLC-A1, and both proteins inhibited the viability of Müller cells. In addition, PI-PLC proteins reduced phagocytosis of Müller cells by decreasing the phosphorylation levels of key proteins in the PI3K/AKT signaling pathway. In conclusion, we showed that PI-PLC proteins contribute to inhibit the viability of and suppress the phagocytosis of Müller cells, providing new insights into the pathogenic mechanism of B. cereus endophthalmitis.


Assuntos
Endoftalmite , Listeria monocytogenes , Humanos , Fosfoinositídeo Fosfolipase C/genética , Fosfoinositídeo Fosfolipase C/metabolismo , Fosfatidilinositol Diacilglicerol-Liase/genética , Fosfatidilinositol Diacilglicerol-Liase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sobrevivência Celular , Células Ependimogliais/metabolismo , Fagócitos/metabolismo , Transdução de Sinais , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
8.
PLoS One ; 18(7): e0289169, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37498903

RESUMO

The phagocytic activity of glial cells is essential for maintaining normal brain activity, and its dysfunction may contribute to the central nervous system (CNS) pathologies, including neurodegenerative diseases. Phagocytic activity is one of the well-established neuroimmune functions of microglia. Although emerging evidence indicates that astrocytes can also function as CNS phagocytes in humans and rodents, limited information is available about the molecular mechanism regulating this function. To address this knowledge gap, we studied modulation of the phagocytic activity of human U118 MG astrocytic cells and murine primary astrocytes by four CNS inflammatory mediators and bacterial endotoxin lipopolysaccharide (LPS). LPS and cytochrome c (CytC) upregulated, while interferon (IFN)-γ downregulated, phagocytosis of latex beads by human astrocytic cells and phagocytosis of synaptosomes by murine primary astrocytes. Interleukin (IL)-1ß and tumor necrosis factor (TNF)-α had no effect on the phagocytic activity of human astrocytic cells but upregulated this function in murine astrocytes. Varying effects of combinations of the above inflammatory mediators were observed in these two cell types. LPS- and CytC-induced phagocytic activity of human astrocytic cells was partially mediated by activation of toll-like receptor 4 (TLR4). By monitoring other functions of astrocytes, we concluded there were no correlations between the effects of the mediators studied on astrocyte phagocytic activity and their secretion of cytokines, cytotoxins, or glutamate. Our study identified four candidate CNS regulators of astrocyte phagocytic activity. Future investigation of molecular mechanisms behind this regulation could identify novel therapeutic targets allowing modulation of this astrocyte-mediated clearance mechanism in CNS pathologies.


Assuntos
Astrócitos , Lipopolissacarídeos , Camundongos , Animais , Humanos , Lipopolissacarídeos/farmacologia , Células Cultivadas , Microglia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fagócitos/metabolismo , Encéfalo/metabolismo , Mediadores da Inflamação/farmacologia
9.
Redox Biol ; 64: 102795, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37379662

RESUMO

Reactive oxygen species (ROS) are a family of highly reactive molecules with numerous, often pleiotropic functions within the cell and the organism. Due to their potential to destroy biological structures such as membranes, enzymes and organelles, ROS have long been recognized as harmful yet unavoidable by-products of cellular metabolism leading to "oxidative stress" unless counterbalanced by cellular anti-oxidative defense mechanisms. Phagocytes utilize this destructive potential of ROS released in high amounts to defend against invading pathogens. In contrast, a regulated and fine-tuned release of "signaling ROS" (sROS) provides essential intracellular second messengers to modulate central aspects of immunity, including antigen presentation, activation of antigen presenting cells (APC) as well as the APC:T cell interaction during T cell activation. This regulated release of sROS is foremost attributed to the specialized enzyme NADPH-oxidase (NOX) 2 expressed mainly in myeloid cells such as neutrophils, macrophages and dendritic cells (DC). NOX-2-derived sROS are primarily involved in immune regulation and mediate protection against autoimmunity as well as maintenance of self-tolerance. Consequently, deficiencies in NOX2 not only result in primary immune-deficiencies such as Chronic Granulomatous Disease (CGD) but also lead to auto-inflammatory diseases and autoimmunity. A comprehensive understanding of NOX2 activation and regulation will be key for successful pharmaceutical interventions of such ROS-related diseases in the future. In this review, we summarize recent progress regarding immune regulation by NOX2-derived ROS and the consequences of its deregulation on the development of immune disorders.


Assuntos
Doença Granulomatosa Crônica , NADPH Oxidases , Humanos , Espécies Reativas de Oxigênio/metabolismo , NADPH Oxidases/metabolismo , Neutrófilos/metabolismo , Doença Granulomatosa Crônica/metabolismo , Fagócitos/metabolismo
10.
Methods Mol Biol ; 2692: 261-274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37365474

RESUMO

Phagosomes are formed when phagocytic cells take up large particles, and they develop into phagolysosomes where the particles are degraded. The transformation of nascent phagosomes into phagolysosomes is a complex multi-step process, and the precise timing of these steps depends at least in part on phosphatidylinositol phosphates (PIPs). Some such-called "intracellular pathogens" are not delivered to microbicidal phagolysosomes and manipulate the PIP composition of the phagosomes they reside in. Studying the dynamic changes of the PIP composition of inert-particle phagosomes will help to understand why the pathogens' manipulations reprogram phagosome maturation.We here describe a method to detect and to follow generation and degradation of PIPs on purified phagosomes. To this end, phagosomes formed around inert latex beads are purified from J774E macrophages and incubated in vitro with PIP-binding protein domains or PIP-binding antibodies. Binding of such PIP sensors to phagosomes indicates presence of the cognate PIP and is quantified by immunofluorescence microscopy. When phagosomes are incubated with PIP sensors and ATP at a physiological temperature, the generation and degradation of PIPs can be followed, and PIP-metabolizing enzymes can be identified using specific inhibitory agents.


Assuntos
Fagossomos , Fosfatos de Fosfatidilinositol , Fosfatos de Fosfatidilinositol/metabolismo , Fagossomos/metabolismo , Macrófagos/metabolismo , Fagócitos/metabolismo , Anticorpos/metabolismo , Fagocitose
11.
Biochim Biophys Acta Biomembr ; 1865(7): 184180, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37245861

RESUMO

In phagocytes, superoxide anion (O2-), the precursor of reactive oxygen species, is produced by the NADPH oxidase complex to kill pathogens. Phagocyte NADPH oxidase consists of the transmembrane cytochrome b558 (cyt b558) and four cytosolic components: p40phox, p47phox, p67phox, and Rac1/2. The phagocyte activation by stimuli leads to activation of signal transduction pathways. This is followed by the translocation of cytosolic components to the membrane and their association with cyt b558 to form the active enzyme. To investigate the roles of membrane-interacting domains of the cytosolic proteins in the NADPH oxidase complex assembly and activity, we used giant unilamellar phospholipid vesicles (GUV). We also used the neutrophil-like cell line PLB-985 to investigate these roles under physiological conditions. We confirmed that the isolated proteins must be activated to bind to the membrane. We showed that their membrane binding was strengthened by the presence of the other cytosolic partners, with a key role for p47phox. We also used a fused chimera consisting of p47phox(aa 1-286), p67phox(aa 1-212) and Rac1Q61L, as well as mutated versions in the p47phox PX domain and the Rac polybasic region (PB). We showed that these two domains have a crucial role in the trimera membrane-binding and in the trimera assembly to cyt b558. They also have an impact on O2.- production in vitro and in cellulo: the PX domain strongly binding to GUV made of a mix of polar lipids; and the PB region strongly binding to the plasma membrane of neutrophils and resting PLB-985 cells.


Assuntos
Citocromos b , Fosfolipídeos , Fosfolipídeos/metabolismo , Citocromos b/metabolismo , Fagócitos/metabolismo , NADPH Oxidases/metabolismo , Membrana Celular/metabolismo , Sítios de Ligação
12.
Cell ; 186(13): 2802-2822.e22, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37220746

RESUMO

Systemic candidiasis is a common, high-mortality, nosocomial fungal infection. Unexpectedly, it has emerged as a complication of anti-complement C5-targeted monoclonal antibody treatment, indicating a critical niche for C5 in antifungal immunity. We identified transcription of complement system genes as the top biological pathway induced in candidemic patients and as predictive of candidemia. Mechanistically, C5a-C5aR1 promoted fungal clearance and host survival in a mouse model of systemic candidiasis by stimulating phagocyte effector function and ERK- and AKT-dependent survival in infected tissues. C5ar1 ablation rewired macrophage metabolism downstream of mTOR, promoting their apoptosis and enhancing mortality through kidney injury. Besides hepatocyte-derived C5, local C5 produced intrinsically by phagocytes provided a key substrate for antifungal protection. Lower serum C5a concentrations or a C5 polymorphism that decreases leukocyte C5 expression correlated independently with poor patient outcomes. Thus, local, phagocyte-derived C5 production licenses phagocyte antimicrobial function and confers innate protection during systemic fungal infection.


Assuntos
Antifúngicos , Candidíase , Animais , Camundongos , Complemento C5/metabolismo , Fagócitos/metabolismo
13.
Cell Host Microbe ; 31(5): 751-765.e11, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37098341

RESUMO

Treating and preventing infections by antimicrobial-resistant bacterial pathogens is a worldwide problem. Pathogens such as Staphylococcus aureus produce an array of virulence determinants, making it difficult to identify single targets for the development of vaccines or monoclonal therapies. We described a human-derived anti-S. aureus monoclonal antibody (mAb)-centyrin fusion protein ("mAbtyrin") that simultaneously targets multiple bacterial adhesins, resists proteolysis by bacterial protease GluV8, avoids Fc engagement by S. aureus IgG-binding proteins SpA and Sbi, and neutralizes pore-forming leukocidins via fusion with anti-toxin centyrins, while maintaining Fc- and complement-mediated functions. Compared with the parental mAb, mAbtyrin protected human phagocytes and boosted phagocyte-mediated killing. The mAbtyrin also reduced pathology, reduced bacterial burden, and protected from different types of infections in preclinical animal models. Finally, mAbtyrin synergized with vancomycin, enhancing pathogen clearance in an animal model of bacteremia. Altogether, these data establish the potential of multivalent mAbs for treating and preventing S. aureus diseases.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Humanos , Staphylococcus aureus , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/prevenção & controle , Infecções Estafilocócicas/microbiologia , Anticorpos Monoclonais/uso terapêutico , Fagócitos/metabolismo , Leucocidinas/metabolismo , Leucocidinas/uso terapêutico
14.
Front Immunol ; 14: 1101569, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911715

RESUMO

Introduction: A small subpopulation of CD66b+ neutrophils with extended lifespan and immensely large size was identified in vitro. They internalized dead neutrophil remnants and cellular debris, transforming them into giant phagocytes (Gφ) resembling macrophage-foam cells with a massive lipid content and CD68+ scavenger receptor expression. Thus, we sought to investigate if similar CD66b+ neutrophils with altered morphology and functions exist in inflammatory/atherosclerotic conditions in vivo, by using human carotid atherosclerotic plaques. Methods: Thirty-three plaques were obtained from 31 patients undergoing endarterectomy. Carotid plaques were analyzed for CD markers by immunohistochemistry and immunofluorescence and quantitatively analyzed by confocal microscopy. Intra-plaque lipids were stained with Oil Red O. Results: Plaque CD66b+ neutrophils co-expressed myeloperoxidase (MPO)+ and neutrophil elastase (NE)+. Also, co-expression of CD66b+/CD68+, CD66b+/CD36+, CD66b+/vascular-endothelial-growth- factor (VEGF)+ and 3-nitrotyrosine (3-NT)+/NE+ was noted. Similarly, macrophages co-expressed CD163+/CD68+, CD163+/VEGF+ and CD163+/3-NT+. Both cell types were predominantly localized in lipid-rich areas and stained for lipids. CD66b+ and CD163+ expressions were highly positively correlated with each other and each with CD68+, and 3-NT+. Morphologically, CD66+ cells were big, had a rounded nucleus, and resembled macrophage-foam cell morphology as well as that of Gφ in vitro. To clarify whether CD66b+ and CD163+ cells represent two distinct plaque-populations, plaques were double-stained for CD66b/CD163 co-localization. A third of the plaques was negative for CD66b/CD163 co-localization. Other plaques had a low co-localization, but in few plaques, co-localization was high, collectively, indicating that in some of plaques there were two distinct cell populations, those resembling Gφ, and those co-expressing CD66b+/CD163+, demonstrating a hybrid neutrophil-macrophage phenotype. Interestingly, CD66b+/CD163+ co-localization was highly positively correlated with the oxidant 3-NT, hence, supporting trans-differentiation of CD66b+ cells to CD163+ Cells. Conversely, phagocytosis of dead neutrophils by macrophages might have also occurred. Discussion: Thus, we conclude that in some of the plaques CD66b+ cells might represent cells resembling Gφ that developed in prolonged culture conditions. Yet, CD66b+/CD163+ co-expressing cells represent a new neutrophil-macrophage hybrid population of unknown transitioning point, possibly by adopting macrophage markers or contrariwise. Nonetheless, the significance and functions of these cells in plaque biology or other inflammatory/atherosclerotic conditions should be unveiled.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Neutrófilos/metabolismo , Placa Aterosclerótica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fagócitos/metabolismo , Macrófagos/metabolismo , Aterosclerose/metabolismo , Fenótipo , Lipídeos
15.
Methods Mol Biol ; 2618: 279-288, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36905524

RESUMO

Phagocytosis is a process by which specific immune cells such as macrophages or dendritic cells engulf large particles. It is an important innate immune defense mechanism for removing a wide variety of pathogens and apoptotic cells. Following phagocytosis, nascent phagosomes are formed which, when fused to lysosome to become phagolysosome containing acidic proteases, will allow the degradation of ingested material. This chapter describes in vitro and in vivo assays to measure phagocytosis by murine dendritic cells using amine beads coupled with streptavidin Alexa 488. This protocol can also be applied to monitor phagocytosis in human dendritic cells.


Assuntos
Fagócitos , Fagocitose , Humanos , Camundongos , Animais , Fagócitos/metabolismo , Macrófagos/metabolismo , Fagossomos/metabolismo , Células Dendríticas
16.
Front Immunol ; 14: 1089905, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36820088

RESUMO

Polymicrobial sepsis still has a high mortality rate despite the development of antimicrobial agents, elaborate strategies to protect major organs, and the investment of numerous medical resources. Mitochondrial dysfunction, which acts as the center of energy metabolism, is clearly the basis of pathogenesis. Drugs that act on PGC1α, the master regulator of mitochondrial biosynthesis, have shown useful effects in the treatment of sepsis; therefore, we investigated the efficacy of ZLN005, a PGC1α agonist, and found significant improvement in overall survival in an animal model. The mode of action of this effect was examined, and it was shown that the respiratory capacity of mitochondria was enhanced immediately after administration and that the function of TFEB, a transcriptional regulator that promotes lysosome biosynthesis and mutually enhances PGC1α, was enhanced, as was the physical contact between mitochondria and lysosomes. ZLN005 strongly supported immune defense in early sepsis by increasing lysosome volume and acidity and enhancing cargo degradation, resulting in a significant reduction in bacterial load. ZLN005 rapidly acted on two organelles, mitochondria and lysosomes, against sepsis and interactively linked the two to improve the pathogenesis. This is the first demonstration that acidification of lysosomes by a small molecule is a mechanism of action in the therapeutic strategy for sepsis, which will have a significant impact on future drug discovery.


Assuntos
Lisossomos , Sepse , Animais , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Lisossomos/metabolismo , Sepse/metabolismo , Fagócitos/metabolismo , Concentração de Íons de Hidrogênio
17.
Nat Neurosci ; 26(3): 406-415, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36747024

RESUMO

Alzheimer's disease (AD) is characterized by synaptic loss, which can result from dysfunctional microglial phagocytosis and complement activation. However, what signals drive aberrant microglia-mediated engulfment of synapses in AD is unclear. Here we report that secreted phosphoprotein 1 (SPP1/osteopontin) is upregulated predominantly by perivascular macrophages and, to a lesser extent, by perivascular fibroblasts. Perivascular SPP1 is required for microglia to engulf synapses and upregulate phagocytic markers including C1qa, Grn and Ctsb in presence of amyloid-ß oligomers. Absence of Spp1 expression in AD mouse models results in prevention of synaptic loss. Furthermore, single-cell RNA sequencing and putative cell-cell interaction analyses reveal that perivascular SPP1 induces microglial phagocytic states in the hippocampus of a mouse model of AD. Altogether, we suggest a functional role for SPP1 in perivascular cells-to-microglia crosstalk, whereby SPP1 modulates microglia-mediated synaptic engulfment in mouse models of AD.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Microglia/metabolismo , Osteopontina/metabolismo , Fagócitos/metabolismo , Macrófagos/metabolismo , Fagocitose , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo
18.
Prog Mol Biol Transl Sci ; 194: 179-217, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36631192

RESUMO

Phagocytosis is a specialized form of endocytosis where large cells and particles (>0.5µm) are engulfed by the phagocytic cells, and ultimately digested in the phagolysosomes. This process not only eliminates unwanted particles and pathogens from the extracellular sources, but also eliminates apoptotic cells within the body, and is critical for maintenance of tissue homeostasis. It is believed that both endocytosis and phagocytosis share common pathways after particle internalization, but specialized features and differences between these two routes of internalization are also likely. The recruitment and removal of each protein/particle during the maturation of endocytic/phagocytic vesicles has to be tightly regulated to ensure their timely action. Ubiquitin proteasome pathway (UPP), degrades unwanted proteins by post-translational modification of proteins with chains of conserved protein Ubiquitin (Ub), with subsequent recognition of Ub chains by the 26S proteasomes and substrate degradation by this protease. This pathway utilizes different Ub linkages to modify proteins to regulate protein-protein interaction, localization, and activity. Due to its vast number of targets, it is involved in many cellular pathways, including phagocytosis. This chapters describes the basic steps and signaling in phagocytosis and different roles that UPP plays at multiple steps in regulating phagocytosis directly, or through its interaction with other phagosomal proteins. How aberrations in UPP function affect phagocytosis and their association with human diseases, and how pathogens exploit this pathway for their own benefit is also discussed.


Assuntos
Fagocitose , Complexo de Endopeptidases do Proteassoma , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Endocitose , Ubiquitina/metabolismo , Fagócitos/metabolismo
19.
Biochim Biophys Acta Mol Cell Res ; 1870(3): 119415, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36640925

RESUMO

The voltage-gated hydrogen channel Hv1 encoded in humans by the HVCN1 gene is a highly selective proton channel that allows large fluxes of protons across biological membranes. Hv1 form functional dimers of four transmembrane spanning proteins resembling the voltage sensing domain of potassium channels. Each subunit is highly selective for protons and is controlled by changes in the transmembrane voltage and pH gradient. Hv1 is most expressed in phagocytic cells where it sustains NADPH oxidase-dependent bactericidal function and was reported to facilitate antibody production by B cells and to promote the maturation and motility of spermatocytes. Hv1 contributes to neuroinflammation following brain damage and favors cancer progression possibly by extruding protons generated during aerobic glycolysis of cancer cells. Lack of specific Hv1 inhibitors has hampered translation of this knowledge to treat immune, fertility, or malignancy diseases. In this study, we show that the genetic deletion of Hv1 delays tumor development in a mouse model of granulocytic sarcoma and report the discovery and characterization of two novel bioavailable inhibitors of Hv1 channels that we validate by orthogonal assays and electrophysiological recordings.


Assuntos
Canais Iônicos , Prótons , Animais , Humanos , Masculino , Camundongos , Membrana Celular/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , NADPH Oxidases/metabolismo , Fagócitos/metabolismo
20.
Immunol Rev ; 314(1): 158-180, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36440666

RESUMO

Neutrophils are the most abundant circulating leukocyte and are crucial to the initial innate immune response to infection. One of their key pathogen-eliminating mechanisms is phagocytosis, the process of particle engulfment into a vacuole-like structure called the phagosome. The antimicrobial activity of the phagocytic process results from a collaboration of multiple systems and mechanisms within this organelle, where a complex interplay of ion fluxes, pH, reactive oxygen species, and antimicrobial proteins creates a dynamic antimicrobial environment. This complexity, combined with the difficulties of studying neutrophils ex vivo, has led to gaps in our knowledge of how the neutrophil phagosome optimizes pathogen killing. In particular, controversy has arisen regarding the relative contribution and integration of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived antimicrobial agents and granule-delivered antimicrobial proteins. Clinical syndromes arising from dysfunction in these systems in humans allow useful insight into these mechanisms, but their redundancy and synergy add to the complexity. In this article, we review the current knowledge regarding the formation and function of the neutrophil phagosome, examine new insights into the phagosomal environment that have been permitted by technological advances in recent years, and discuss aspects of the phagocytic process that are still under debate.


Assuntos
Neutrófilos , Fagossomos , Humanos , Fagossomos/química , Fagossomos/metabolismo , Fagocitose , Fagócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...